$$
\begin{aligned}
& \text { Calculation } \\
& \text { at TAS }
\end{aligned}
$$

The Five Big Ideas

At TAS, we want our pupils of all ages to acquire a deep, long-term, secure and adaptable understanding and enjoyment of maths.

Coherence

Lessons are broken down into small connected steps that gradually build up from what a child already knows to the introduction of new concepts.

Representation and Structure

Representations are used in lessons to show children a visual representation of the maths they are doing.

Mathematical Thinking

Children work on ideas by discussing with others and explaining their reasoning, rather than being told how to think.

Fluency

Quick and efficient recall of facts and procedures is vital, so that it can be applied in different contexts.

Variation

The teacher often represents the concept being taught in more than one way, to develop a deeper understanding. Children are also given the opportunity to practise their skills in varied ways, by making connections.

The CPA Approach

CONCRETE -
using physical objects
to solve maths problems.

PICTORIAL -
using drawings to solve maths problems.

ABSTRACT solving maths problems using only numbers.

Representations and Resources

Numicon

part whole
models

whole
tens frames

18

bar models
straws
 number lines

place value counters

Hundreds	Tens	Ones
(10) (10)	$\begin{aligned} & 1010 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ (10)	$\begin{aligned} & 10 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
2	5	6

Cuisenaire rods

Rekenreks

Addition

- Combining two parts to make a whole
- Starting at the bigger number an counting on using cubes
- Regrouping to make 10

Concrete
a range of practical objects $4+3=7$

Pictorial
base ten
$8+7=15$
$\begin{array}{ll}\square \square & \square \\ \square \\ \square \square & \square \\ \square \\ \square & \square \\ \square \square & \square\end{array} \rightarrow\left[\begin{array}{l}\square \\ \square \\ \square \\ \square \\ \square\end{array}\right.$

Abstract

number line part whole model
$8+7=15$

Different ways to solve bar model

Key Vocabulary

sum total
parts and wholes altogether
plus the same as more

Subtraction

－Taking away ones
－Counting back
－Find the difference
－Part whole model
－Making 10

Concrete
a range of practical objects
$7-3=4$

$14-6=8$

Pictorial
base ten
$7-3$＝ 4

ロロ
ロロ
$\not \square \square$
\square

Abstract							
number line							
7－3＝ 4							
$\bigcirc \cap$							
1	2	3 （4） 5	5		8	9	10
Different ways to solve							
bar model							
$7-3=4 \quad 7$							
				？			3
$14-6=8$							
14							

Key Vocabulary

take away the difference minus
less than
subtract
fewer

Multiplication

- Recognising and making equal groups
- Doubling
- Counting in multiples using Numicon, cubes etc.

Concrete
a range of practical objects
$5+5+5+5=20$

Pictorial
equal groups of objects

Abstract

 repeated addition$$
5+5+5+5=20
$$

Different ways to solve

 ten frames bead strings
$-00000-00000-0000-00000-$

Key Vocabulary
double multiplied by groups of
times
lots of
equal groups

Division

- Sharing objects into groups
- Division as grouping (how many groups of ...)
- Use cubes and draw round a number of cubes

Concrete

a range of practical objects

Pictorial
make equal groups of objects

20

Abstract
group in different ways

Different ways to solve
ten frames
bead strings

-00000-00800-0000-00000-

Key Vocabulary
share
group
divide half

Methods of calculation for each year group						
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Add two 1-digit numbers to 10 Add 1- and 2-digit numbers to 20	Add three 1-digit numbers Add 1 and 2-digit numbers to 100 Add two 2-digit numbers	Add with up to 3 digits	Add with up to 4 digits	Add with more than 4 digits Add with up to 3 decimal places	
Representations and models	Part whole model, bar model, Ten frames, bead strings, number line, straws	Part whole model, bar model, Ten frames, bead strings, number line, straws, hundred square, Base 10	Column Addition Part whole model, bar model, Base 10, place value counters	Column Addition Part whole model, bar model, Base 10, place value counters	Column Addition Part whole model, bar model, place value counters	
Subtraction	Subtract two 1digit numbers to 10 Subtract 1- and 2digit numbers to 20	Subtract 1 and 2-digit numbers to 100 Subtract two 2digit numbers	Subtract with up to 3 digits	Subtract with up to 4 digits	Subtract with more than 4 digits Subtract with up to 3 decimal places	
Representations and models	Part whole model, bar models, number lines, ten frames, bead strings number tracks, straws	Part whole model, bar Model, number lines, Straws, hundred square, Base 10, place value counters	Column subtraction part whole model, bar model, Base 10, place value counters	```Column subtraction part whole model, bar model, place value counters```	```Column subtraction part whole model, bar model, place value counters```	
Times Tables		Recall and use multiplication and division facts for the 2, 10 and 5 times tables	Recall and use multiplication and division facts for the 3,4 and 8 times tables	Recall and use multiplication and division facts for the $6,7,9,11$ and 12 times tables		
Representations and models		Hundred square, Base 10, number lines, bead strings, place value counters, number tracks, everyday objects	Hundred square, Base 10, number lines, bead strings, place value counters, number tracks, everyday objects	Hundred square, Base 10, number lines, bead strings, place value counters, number tracks, everyday objects		
Multiplication	Solve one-step problems with multiplication	Solve one-step problems with multiplication	Multiply 2-digit by 1-digit numbers	Multiply 2 and 3digit by 1-digit numbers	Multiply 4-digit by 1-digit numbers Multiply 2-digit by 2 and 3-digit numbers	Multiply 2-digit by 4-digit numbers
Representations and models	Bar models, counters, Base 10, Ten frames, bead strings, number lines	Bar models, counters, Base 10. Ten frames, bead strings, number lines	Expanded written method Short written method Place value counters, Base 10	Expanded written method Short written method Place value counters, Base 10	Formal written method Place value counters, Base 10	Formal written method
Division	Solve one-step problems with division (grouping and sharing)	Solve one-step problems with division (grouping and sharing)	Divide 2 digits by 1 digit (sharing with and without exchange, with and without remainders	Divide 2 digits by 1 digit (grouping and sharing with remainders)	Divide 3 and 4 digits by 1 digit (sharing with exchange and grouping)	Divide multi digits by 2 digits (short and long division)
Representations and models	Real life objects, bead strings, ten frames, number lines, arrays, counters, bar models	Real life objects, bead strings, ten frames, number lines, arrays, counters, bar models	Straws, Base 10, bar models, place value counters, part whole models	Written short division Place value counters,	Written short division Base 10, bar models, place value counters. part whole models	Written sort and long division. list of multiples

Please note: some children may need to work in the stage before or after their year group, as appropriate for their needs.

